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We investigate t h e  automation of a Mars  aerobraking vehicle t ha t  uses reaction 
wheels for a t t i tude and angular momentum control during atmospheric flythrough. 
In  a previous study, single-axis control laws were developed for minimum onboard 
instrumentation t o  compensate for large variations in entry t ime and atmospheric 
density. In  this paper we test  modifications of those control laws t o  provide two-axis 
control in high-fidelity simulations that  include six degrees of freedom, nearly ideal 
reaction wheels, spherical harmonics, and oblate atmosphere. Preliminary results 
indicate that  our approach may be highly practical for a n  autonomous aerobraking 
mission a t  Mars. 

Nomenclature 
Reaction wheel orientation matrix 
Fully normalized tesseral coefficient 
Direction cosine matrix 
Total angular momentum, kg.m2/s 
Spacecraft inertia matrix, kg.m2 
Diagonal matrix of reaction wheel mo- 
ments of inertia, kg.m2 
Reaction wheel drag torque coefficient 
International Astronomical Union 
(IAU) Latitude, deg 
External moment acting on spacecraft, 
kg.m2/s2 
Number of reaction wheels 
Fully normalized associated Legendre 
function 
Inertial attitude quaternion 
Inertial position vector of spacecraft, 
km 
Fully normalized sectoral coefficient 
Gravity potential, km2/s2 
Reaction wheel control torques, 
kg.m2/s2 
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Inertial velocity vector of spacecraft, 
km/s 
State vector 
Angle of attack, deg 
Sideslip angle, deg 
Flight path angle, deg 
True anomaly plus argument of peri- 
apsis, deg 
IAU Longitude, deg 
Gravitational parameter, km3/s2 
Atmospheric density, kg/km3 

Roll angle, deg 
Reaction wheel angular rates, deg/s 
Spacecraft angular rates, deg/s 

e - Y, deg 

Subscripts 
A = Affinor of rotation 

atm = Atmospheric 
Q = Quaternion kinematical matrix 
re1 = Relative 

Superscripts 
e = Equilibrium 
i = Inertial 

cm = Center of mass 

Introduction 
EROBRAKING saved the Mars Global Sur- A veyor (Fig. 1) 1200 m/s of propulsive AV in 
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Fig. 1 The Mars Global Surveyor Spacecraft 

Fig. 2 Orbit decay using aerobraking. 

placing a spacecraft into a low-energy orbit around 
Similar aeroassisted techniques in the lit- 

erature also provide reduction in propulsive maneu- 
vers.6-8 The tradeoffs in using aerobraking include 
increased time before the science phase can begin, 
increased communications requirementsg to monitor 
aerobraking progress, and the necessary dumping of 
angular momentum accumulated during each drag 
pass.10 

Description of Problem 
An aerobraking spacecraft uses the atmosphere to 

reduce the energy of the orbit (Fig. 2). The at- 
mospheric drag force provides the desirable AV to 
effect the orbit change. During each orbit, the space- 
craft also accumulates angular momentum from sev- 
eral external torques (e.g. aerodynamic, gravity 
gradient, solar radiation pressure). Traditionally, 
the spacecraft reaction wheels absorb this angular 
momentum, allowing the spacecraft itself to remain 
in an inertial attitude. As the reaction wheels be- 
come saturated, propellant is used to eliminate the 
acquired angular m ~ m e n t u m . ~  

In our scenario, we use the atmospheric moment 
to our advantage. Instead of acquiring additional 
momentum during the drag pass, the spacecraft ob- 
tains a free desaturation of the reaction wheels by 
torquing against the atmosphere. Our goal is to de- 
vise a control law for the reaction wheels such that 
the net spacecraft momentum after each flythrough 
is driven to zero. Ideally, the spacecraft would have 

Table 1 Reference spacecraft parameters 

Parameter Reference value 
mass 1000 kg 
CD 1.9 

C M =  -0.01 deg-' 
C M V  
- 4 e f  17.44 m2 
L e f  8.73 m 

max rw torque 0.18 N.m 
rw capacity 27.0 N.m.s 

I x x  814 kg.m2 
I Y V  410 kg.m2 
I z z  695 kg.m2 

-0.00366 deg-' 

J 0.0645 kg.m2 

sufficient instrumentation available to measure every 
state variable. Unfortunately, such instrumentation 
comes at the expense of additional hardware cost 
and mass to the mission. We therefore choose to 
find a controller which will only rely on angular rate 
feedback. 

Modeling assumptions 
The only measurable states are spacecraft and 
reaction wheel angular rates, and the inertial 
quaternion vector. 

The Martian gravity field is evaluated up to 
10th order and degree from a spherical har- 
monic model. 

The spacecraft has n 2 3 reaction wheels, which 
span R3. 

The reaction wheels are aligned in arbitrary 
(possibly non-orthogonal) orientation, subject 
to the R3 constraint. 

The reaction wheels are nearly ideal." 

The atmosphere rotates as a rigid body along 
with Mars. 

The atmosphere is modeled as oblate and lo- 
cally exponential (using MarsGRAM COSPAR 
data", 13). 

The controller provides control about the two 
aerodynamically stable axes only (pitch and 
yaw). (Le., no attempt is made to control rota- 
tion about the roll axis.) 

The reference spacecraft properties are given in 
Table 1. 
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Equations of Motion 
Orbital 

The inertial position of the spacecraft is described 
in Cartesian coordinates by the International As- 
tronomical Union (IAU) convention.'* The inertial 
X - Y plane is fixed in the equatorial plane of Mars, 
with the X direction defined by the intersection of 
the ecliptic and the equator. The 2 direction is 
along the Martian north pole. 

The three position Equations of Motion (EOMs) 
are simply: 

r = v  (1) 

The 3 velocity EOM's may be written as: 

where the relative wind on the spacecraft is: 

V r e l  = V a t m  - V 

and where the atmospheric velocity V a t m  is given 
by : 

(3) 

V a t m  = -watm@ + WatmxY (4) 
The gravity potential U is given by: 

x [Cnm cos mX + Snm sin mX] } (5) 

We evaluate the gravity potential up to 10th order 
and degree, which is needed to resolve the orbital 
perturbations caused by Olympus Mons. 

Attitude 
We can express the spacecraft's attitude either in- 

ertially (using quaternions), or in terms of relative 
wind angles (such as angle of attack and sideslip an- 
gle). The spacecraft itself will not be able to measure 
these relative wind angles; but they are important 
from an analytical point of view, since the momen- 
tum EOMs are coupled with the relative wind angle 
EOMs. 

Both sets of attitude EOMs require angular rate 
information, which is obtained from the momentum 
EOM. The total system angular momentum consists 
of two components - one due to the angular rate of 
the spacecraft relative to the inertial frame, and the 
other due to the reaction wheels rotating relative to 
the spacecraft frame. The total momentum is thus: 

(6) iHcm - - Iw + AJO 

Since the reaction wheels can only spin about one 
principal axis, only a single moment of inertia is 
needed to describe a reaction wheel. The J matrix is 
an n x n diagonal matrix of reaction wheel moments 
of inertia. The A matrix (which is size 3 x n) maps 
unit vectors from the individual reaction wheels to 
the body-fixed frame. 

To develop the attitude EOMs, the momentum 
vector in Eq. 6 is differentiated with respect to the 
inertial frame to yield: 

ij+m = I W  + AJC3 + W A  (Iw + A J n )  (7) 

The matrix W A  is the "affinor of rotation", which is 
the skew-symmetric matrix equivalent to the cross 
product operation: 

With reaction wheel drag torques present, we 
have: 

J C ~  = u - K D O  (9) 

Now we apply Euler's Law, combining Eqs. 7 and 
9 to yield: 

M"" = I W  + A(u - Koa) + WAIW 

+wAAJO (10) 

-A(u - K D O ) )  (11) 

-Au + AKDO)  (12) 
SZ = J - ~ u -  J - ~ K ~ O  (13) 

W = I-' (Mcm - WAIW - WAAJO 

W = I-l (Mcm - WAIW - WAAJO 

In this study, the external moment MCm is simply 
the atmospheric torque. For the MGS model,5 the 
+X axis has a moment proportional to p, and the 
+Y axis has a moment proportional to CY. Thus, the 
atmospheric torque term is: 

The final form of the momentum EOMs is given 
by Eqs. 12,13, and 14. 

Inertial EOMs 

from: 
The spacecraft's inertial attitude is determined 

(15) 
1 

G =  Z w Q g  
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where 

r o wz -wy wz 1 
2 :; J (16) W Q =  1 wy -w, 

-wz 0 

-w, -wy -wz 0 
Relative EOMs 

Since the momentum EOMs are a function of the 
aerodynamic angles a and /3 (from Eqs. 12 and 14), 
we need to derive equations of motion for these 
angles to conveniently analyze the behavior of the 
system. These EOMs we will derive are not actu- 
ally integrated in the simulation, since the inertial 
attitude and position are sufficient to calculate the 
a and p. The motivation for this analysis is to lin- 
earize the relative attitude EOMs for use in a linear 
feedback controller. 

We note that the relative wind angles Q and p 
can be thought of as two Euler angles. These angles 
are measured relative to the relative wind vector. 
With a = ,B = 0, the spacecraft is pointing directly 
into the wind. The third Euler angle needed to com- 
plete the sequence is roll ($, about the +Z spacecraft 
axis), which must be the first rotation in the se- 
quence. By choosing the second and third rotations 
as angle of attack ( a )  and sideslip (p), respectively, 
the aerodynamic properties of Q and p are preserved. 
This 321 Euler sequence is oriented with respect to 
the relative wind, which is not inertially fixed. Thus 
we must include another rotation to transform in- 
ertial unit vectors into relative wind vectors. This 
is accomplished by two coaxial rotations - the first 
rotating the spacecraft along its orbit through an 
angle of 8 from some inertially fixed point (e.g., the 
ascending node), and the second rotating the space- 
craft’s attitude to point along its velocity vector (a 
rotation through the flight path angle y). We define 
the net rotation by the value x 

The inertial frame directions are chosen to match 
the spacecraft attitude when a = ,B = + = 0. This 
means that 21 points to the ascending node of the 
orbit, 61 points away from the orbital momentum 
vector, and 21 completes a right-handed sequence by 
pointing to a location in the orbital plane 90 degrees 
ahead of the ascending node. With this definition 

The direction cosine matrix mapping from inertial 

0 - y. 

j (  = -xg,. 

coordinates to body-fixed coordinates is: 

D=Dp.D,.D+.Dx (17) 
where 

cosx 0 sinx 

-s inx 0 cosx 
D, = [ 0 1 0 ] (18) 

cos$ sin$ 0 
-sin+ cos+ 0 

0 0 1  
cosa 0 - s ina  

D, = [ 0 1 0 ] 
sina 0 cosa 

0 cosp sinp 
1 0  

0 -s inp cosp 

(20) 

DP = [ 
The expression for the angular rates is given by: 

w = p + a + + + j (  (22) 

= [ ! ] + D p  
0 “ 1  0 +DpD, [ i] 
;] 0 (23) 

This system is then solved for the Euler angular 
rates to yield: 

Equations 25 and 26 form the relative attitude 
equations of motion. 

The natural motion of the relative wind angles 
can be examined by setting w to 0, and setting the 
sideslip angle p and roll angle 11, to 0 as well. Equa- 
tions 25 and 26 collapse to: 

[ ! ] = [ ; I  (27) 

We note from Eq. 26 that x > 0 during the drag 
pass. Thus, the angle of attack will naturally tend 
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to increase as the spacecraft orbits the planet. The 
exact solution to the attitude EOMs will have an os- 
cillating component, but without any control along 
the pitch axis, the angle of attack would be biased 
in the positive direction. From Eq. 14, we conclude 
that with an uncontrolled attitude, momentum will 
tend to accumulate along the pitch axis during each 
drag pass. An attitude control is necessary to pre- 
vent the buildup of momentum. 

Reaction Wheel Control Laws 
The reaction wheel control laws can be divided 

into two types - exoatmospheric and atmospheric. 
In exoatmospheric flight, the reaction wheels are 
commanded to maintain an inertial attitude. For at- 
mospheric flight, we investigate 3 control laws: spin 
down, affine partial state, and two stage. 

Inertial Attitude Hold Controller 
In normal spacecraft operation, the spacecraft is 

held in an inertially fixed attitude to either conduct 
science experiments or communicate with Earth. In 
our scheme, the spacecraft prepares for a drag pass 
by slewing into a new inertially-fixed attitude such 
that the spacecraft is pointing into the relative wind 
upon entry. As the spacecraft descends towards pe- 
riapsis, the angle of attack increases, and the total 
system angular momentum changes as it is subjected 
to a growing aerodynamic torque. Since the reac- 
tion wheels are commanded to maintain an inertial 
attitude, the change in momentum is transferred to 
the reaction wheels. Thus, the spacecraft senses at- 
mospheric entry when the commanded torque mag- 
nitude exceeds some threshold. (In our simulations, 
we use a threshold of 5% maximum torque.) Af- 
ter this threshold is exceeded, the reaction wheel 
switches to an atmospheric control mode. (Here we 
note again that the only instrumentation assumed 
are gyros to measure the angular velocities. It seems 
clear, however, that an accelerometer would signifi- 
cantly aid in the detection of atmospheric entry.) 

Once atmospheric entry is detected, an onboard 
timer is started. This timer’s purpose is to count- 
down the time until the spacecraft should reach 
periapsis (which is needed for some control laws) 
and also to countdown the time until the spacecraft 
should exit the atmosphere. Upon atmospheric exit, 
the reaction wheels once again switches modes - 
this time, back to the inertial attitude hold mode. 

These timed events can be predicted by a simple 
polynomial curve fit, as a function of orbit period. If 
the atmospheric density is higher or lower than the 
nominal case, then the sensed entry will be sooner or 
later than expected, which will slightly alter the tim- 

ing of events. Timing errors have the largest impact 
in low-density, high-period orbits since a significant 
percentage of the flythrough time is used up before 
atmospheric entry is sensed. A low torque threshold 
will guard against this kind of timing error (but if 
the threshold is too small, other perturbations may 
prematurely activate the atmospheric controller). 

Spin-Down Controller 

This control law despins the yaw and pitch re- 
action wheels during the atmospheric flythrough. 
Upon reaching zero-spin rate, the applied reac- 
tion wheel torques are shut off. After exiting the 
atmosphere, all residual spacecraft momentum is 
transferred back to the reaction wheels. 

This mechanism works because the spacecraft can 
torque against the atmosphere. The atmosphere 
tends to keep the spacecraft in place, (the angle of 
attack and sideslip angles oscillate about zero) while 
the wheels are desaturated. This control law works 
best if started near periapsis, where the atmosphere 
is densest. Before the spacecraft reaches its esti- 
mated periapsis, the commanded torque is zero, thus 
allowing the spacecraft to weathervane (undamped) 
back and forth into the relative wind. Shortly before 
periapsis, the pitch and yaw axis reaction wheels are 
despun at maximum available torque. Afterwards, 
the commanded torque is again set to zero until exit. 
To ensure the reaction wheels have enough time to 
despin, each reaction wheel begins its momentum 
dump such that the dump will be half completed 
during the estimated periapsis passage. 

Since the roll axis has no opposing external mo- 
ment to torque against, any change in momen- 
tum along that axis will not be altered by the at- 
mosphere. Any momentum storage along the roll 
axis will either have to be removed propulsively, or 
by creating an external moment by rotating the solar 
panels. 

This control law has the advantage of being simple 
to implement, and being independent of spacecraft 
and planetary parameters. It is also one of the best 
performing control laws for the six DOF case. 

Affine Partial-State Controller 

For this approach, we wish to devise a linear state 
feedback controller to drive the total system momen- 
tum to zero. We first need to linearize the attitude 
EOMs, then pick a feedback gain matrix K to pro- 
duce a stable closed-loop system, using only the 
measurable states ( w ,  0) as feedback. The deriva- 
tion of this controller is as follows: 
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Linearization of Equations of Motion 
The angular momentum from Eq. 6 is a linear 

combination of the spacecraft and reaction wheel an- 
gular rates. The EOMs for the spacecraft angular 
rates (Eq. 12) is a function of the Euler wind angles. 
Thus, we need to linearize Eqs. 12, 13, and 25. 

The first step in linearization is to choose the 
desired equilibrium conditions, and to redefine the 
state variables as appropriate. One such set of equi- 
librium conditions is: 

a e = p e = + e  = 0 (28) 
0 

we = [ -$I 
r o i  

(29) 

= J - ~ A ~ ( A A ~ ) - ~ I  x (30) i O J  
Let E be the column vector of Euler angles: 

E =  [!] 
The state variables are then redefined by subtract- 

ing out their equilibrium values. Let x be the column 
vector of state variables, and 6x x - xe ,  where 
x [E,w,C2lT. 

The linearized system of equations can be written 
as: 

6X = A(p)bx+Bbu (33) 
H = C6X (34) 

Alternatively, we can write the system in affine form 
using the original state variables as: 

X = A ( p ) x + B u + F  (35) 
H = c x  (36) 

where 

A23 37) 
. J - ~ K ~  0 3 x n  I 

(38) 

(39) 

6 OF 

The control law is in the form of 6u = Kbx, or, 
in terms of original state/control variables: 

u = K x  - Kxe + ue (42) 

K is the feedback control gain of the form 

K ' [  KE KW K O  ] (43) 

For a spacecraft with n reaction wheels, we have 
6 + n states and thus n2 + 6n feedback gains to 
choose. Because we cannot measure the Euler an- 
gles, we set the 3n parameters from KE to zero. We 
need a method to pick the remaining n2 + 3n feed- 
back gains to stabilize the closed-loop system. Since 
momentum cannot be removed from the roll axis, we 
set those coefficients to zero. Also, since the pitch 
and yaw axes are uncoupled in the linearized model, 
we set the cross terms to zero as well. This leaves us 
with 4 coefficients to choose (two for the pitch axis, 
and two for the yaw axis). 

Since our A matrix is time-varying, negative in- 
stantaneous eigenvalues are insufficient for stability. 
To achieve stability in the nonlinear time-varying 
system, we take a minimax approach, where we pick 
the gain matrix such that the maximum real part of 
the closed-loop eigenvalues is a minimum. We note 
that the equilibrium conditions in Eqs. 29 and 30 
are functions of x, which is itself a function of the 
orbit. To avoid having the spacecraft update this 
parameter after every drag pass, we tune the equilib- 
rium point to the particular orbit corresponding to 
an eccentricity of 0.4. Alternatively, the equilibrium 
point could be retuned each orbit, but results indi- 
cate that a statically tuned equilibrium point works 
sufficiently well. 

Two-Stage Controller 
The affine partial state controller performs nearly 

all of its work by the time the spacecraft reaches pe- 
riapsis. In thick atmospheres, the controller quickly 
drives the system to the equilibrium condition. In 
thin atmospheres, the affine partial state controller is 
too sluggish to fully desaturate the reaction wheels. 
However, the spin-down controller can rapidly de- 
spin the wheels. Furthermore, the spin-down con- 
troller performs best when activated near periapsis. 
The advantages of these two controllers inspire us 
to define a two-stage control law, which is a com- 
bination of the two laws. The first stage uses the 
affine partial state control law, and is activated upon 
atmospheric entry. The second stage uses the spin- 
down logic, and is activated at estimated periapsis. 

In the cases where the first stage is able to com- 
pletely remove the system momentum, the space- 
craft and reaction wheels have a nonzero equilibrium 
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Table 2 Reference simulation parameters 

Parameter Reference value 
Eccentricity 0.4 

Dynamic pressure at  periapsis 0.5 N/m2 
Stored momentuma 13.5 kg.m2/s 

Entry angle of attack 0 deg 
Entry sideslip angle 0 deg 

a along pitch (+Y) axis 

angular rate (Eqs. 29 and 30). We modify the spin- 
down stage to spin down to the affine partial state 
equilibrium point. Thus, in the nominal cases, the 
two-stage controller performs as well as the affine 
partial state controller. 

Results 
We judge the effectiveness of a particular control 

law by the angular momentum reduction achieved 
during the drag pass. There are several parameters 
which influence the performance of our control laws. 
As we consider the variations in the most influential 
parameters, we find it convenient to establish a set 
of reference parameters, which are listed in Table 2. 

The initial orientation of the stored momentum 
has a substantial effect. Figure 3 illustrates the frac- 
tional momentum remaining after a drag pass (using 
the two-stage control law) as a function of the direc- 
tion of the initial stored momentum vector. The 
color indicates the fractional momentum magnitude 
remaining, where blue (0%) is the desired result, in- 
dicating all stored momentum has been annihilated. 
The color red (loo+%) indicates the spacecraft's 
momentum magnitude has remained constant or in- 
creased as a result of the drag pass. We note that 
momentum is not removed from the roll (Z) axis, 
since there are no external moments along that axis. 
The corresponding plots for the other two control 
laws (spin-down and affine partial state) yield re- 
sults very similar to Fig. 3, and are therefore not 
shown. 

The most important parameters that affect our 
control laws are the atmospheric density and orbit 
eccentricity. Figures 4, 6 and 8 illustrate the perfor- 
mance of the three control laws. The height of the 
mesh represents the fractional momentum remaining 
after a drag pass. The spin-down case (Fig. 4) usu- 
ally removes about 90% of the stored momentum. It 
is somewhat less effective in a thin atmosphere. In 
this case, the spacecraft does not sense atmospheric 
entry until relatively late in the drag pass. As a re- 
sult, the periapsis timer is started late, and the spin- 
down controller barely has enough time to complete 

Fig. 3 Fractional momentum remaining after 
a drag pass as a function of initial momentum 
orientation, using the two-stage control law. 

its momentum dump. However, if the controller is 
started too early in the nominal or thick atmosphere 
cases, there will not be enough external torque to 
oppose the spacecraft's angular momentum. This 
condition will result in high-amplitude oscillations 
about the pitch and yaw axes, which will cause the 
spacecraft to gain momentum instead of to lose it. 

The affine partial state control law (Fig. 6) is able 
to remove nearly 100% of the total momentum in 
most cases. It has trouble in the low density case, 
but still works better than the spin down. In the 
worst case (loglop/p0 = -1, e = 0.9), spin down 
removes only 20% of the stored momentum, while 
the affine partial state removes about 65% of the 
momentum. 

The tuning of the affine partial state about an 
eccentricity of 0.4 is also evident in Fig. 6 as a slight 
upward slope in the mesh surface away from the line 
e = 0.4. 

Finally, the two-stage control law (Fig. 8) demon- 
strates the best of both previous controllers. The 
mesh is flat like the affine partial state, but without 
the slope. In the worst case, the controller removes 
over 80% of the stored momentum. 

Figures 5, 7, and 9 show another performance 
characterization. In these plots, the fractional re- 
maining momentum is shown as a function of entry 
angle of attack (a) and sideslip angle (p).  The 
sideslip angle will typically be known to within a 
degree, and angle of attack within 15 degrees. All 
three controllers are able to meet this tolerance in 
the blue region. In terms of acceptable entry atti- 
tudes, the two-stage controller is the most robust, 
since it performs the best overall, as the entry atti- 
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E 
5 - - 8- 4 

0 2  

0 
-1  

0 1  

Eccentricity 
log,, PIP, 0.9 

Fig. 4 Fractional momentum remaining after a 
drag pass for the spin-down controller. Relative 
density and eccentricity are shown as indepen- 
dent variables. A relative density of 0 is nominal, 
-1 is 10% nominal, and 0.3 is 200% nominal. 

a [des1 

Fig. 5 Fractional momentum remaining after a 
drag pass for the spin-down controller. Indepen- 
dent variables are angle of attack (a) and sideslip 
angle (p) at  entry. 

tude uncertainty increases. 
The control laws also perform better with nega- 

tive entry angles of attack. As the spacecraft orbits 
the planet, the natural motion (i.e., the tendency for 
the attitude to remain inertially fixed) causes the an- 
gle of attack to increase. Thus, when the spacecraft 
enters the atmosphere with a high negative 0, the 
atmospheric controller is triggered quickly, and the 
angle of attack increases naturally. Conversely, with 
a positive angle of attack at  entry, the natural mo- 
tion is to continue increasing - a behavior which 

0 1  

Eccentricity 
0.9 

@,o P'PO 

Fig. 6 
the affine partial state controller. 

Fractional momentum remaining using 

0 20 40 60 
vu 
-60 -40 -20 

a Ides1 

Fig. 7 
the affine partial state controller. 

Fractional momentum remaining using 

the spacecraft has difficulty counteracting. 
We present an extreme case in Figs. 10-12. These 

plots show the fractional momentum remaining for 
the three control laws when the initial momentum 
wheel (along the pitch axis) is 100% saturated. 
All three control laws are able to substantially re- 
duce the momentum for every eccentricity and at- 
mospheric density considered. 

All three control laws perform well under a vari- 
ety of conditions. Table 3 summarizes the average 
and worst-case performance of the three laws. The 
spin-down and affine partial state controllers have 
similar performance for low saturations, while the 
affine partial state is usually better for higher initial 
saturations. The two-stage controller is uniformly 
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0 2  

0 
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Eccentricity 
log,, PiPo 0.9 

Fig. 8 
the two-stage controller. 

Fractional momentum remaining using 

-60 -40 -20 0 20 40 60 
a [des1 

Fig. 9 
the two-stage controller. 

the best control law in almost all test cases. 

Fractional momentum remaining using 

The Roll Axis 
If the solar panels are attached at  an angle relative 

to the Y - Z plane, the relative wind can induce 
a “propeller torque” on the body +Z axis (the roll 
axis). Since the torque on the roll axis will always be 
in same direction, the angular momentum buildup 
will be secular. 

The current practice is to use propellant to man- 
age the spacecraft’s momentum. With our two-axis 
control laws, propellant would only be needed to 
manage the roll axis momentum. Another scheme 
to manage the roll axis momentum is to articulate 
the solar panels to control the rolling moment. This 

Eccenlridty 
log,, PIP, 0.9 

Fig. 10 Fractional momentum remaining using 
the spin-down controller. Initial stored momen- 
tum along the pitch (+Y) axis is 27 kg.m2/s 
(100% capacity). 

1 

0.8 

-a.6 
I 
I 
3 . 4  

0.2 

0 
-1 

0 1  

Eccenlncity 
log,, PiPo 0.9 

Fig. 11 
the affine partial state controller. 

Fractional momentum remaining using 

- 1  0 2  

-0.5 -2 

Eccentricity 
b,, PIP, 0.9 

Fig. 12 
the two-stage controller. 

Fractional momentum remaining using 
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Table 3 Performance summary of control laws 

Initial Final saturation [%] 
Saturation spin affine two 

[%I down stage 
0% mean 0.9 1.1 0.3 

max 3.1 2.6 1.4 
25% mean 2.9 2.0 1.1 

max 11.1 12.1 6.8 
50% mean 2.5 2.0 0.8 

max 12.2 16.4 8.8 
75% mean 2.6 1.8 1.3 

max 12.6 7.9 9.0 
100% mean 3.6 3.2 2.0 

max 28.2 26.5 15.6 

controller would control the pitch angle of the “pro- 
pellor blades” (solar panels) to first annihilate the 
roll-axis momentum, and then null out the rolling 
moment. 

Conclusions 
All three of the considered control laws are capa- 

ble of managing the spacecraft angular momentum. 
The spin-down case is conceptually the simplest of 
these three control laws, and has the advantage of 
being independent of spacecraft properties. How- 
ever, the spin-down controller does require timing 
information on periapsis, which is particularly criti- 
cal for high eccentricity orbits and high initial stored 
momentum. 

The affine partial state controller is the easiest to 
implement, needing only 5 constant parameters to 
fully describe it. These parameters are functions of 
spacecraft inertia, aerodynamic moment coefficients, 
and projected atmospheric density. Since this con- 
troller does not require any timing information, it is 
the least memory-intensive controller of the three. 

Finally, the two-stage controller provides perfor- 
mance superior to its two component laws, but at 
the combined complexity of the two. 
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